New Perspectives: A Few Innovative Ways to Analyze MOVES Data in Support of Regional Modeling in Mobile Source Emissions

Jin-Sheng Lin, Sonya Lewis-Cheatham, and Kristen Stumpf Virginia Department of Environmental Quality

MARAMA Workshop Meeting
July 23, 2013
Charlottesville

- **■** Background
- **MOVES Emission Processes**
- Data Analyses on Lookup Tables
- Effect of Relative Humidity
- Effect of Reid Vapor Pressure
- Effect of Vehicle Fleet Age
- Algorithm Separating Emission Processes
- **Temporal Profiles**
- Summary and Conclusion

Background

Operation modes for MOVES and SMOKE-MOVES:

Mode	(1) Inventory Mode	(2) Emission Rate Mode	(3) Lookup Table Mode
Model	MOVES	MOVES	MOVES, SMOKE-MOVES
Primary Usage	Emission inventory development	Sensitivity runs	Regional emission modeling
Strength	Local data, No post- processing required	Detailed emission processes	Detailed meteorology, Large scale modeling
Weakness	Generalized meteorology	Complex outputs in emission rates	Representative county, Difficult to operate
Resolution	County, Month	County, Month	Representative county, Fuel month
Challenges	SCCs	SCCs	SCCs, Relative humidity

2007 RPOs versus 2007 EPA for NOx (lookup table mode)

(2007LKP - 2007EPA) *100 / 2007EPA

Very large variability in NOx is seen between RPOs and EPA estimates. Differences range from -50% to +200%.

Current Status

- MOVES by itself is not suitable for regional scale modeling
- SCCs implemented in MOVES are severely flawed
- Crude approaches for representative county and (two) fuel month in SMOKE-MOVES greatly minimize (or reduce) spatial and temporal resolutions
- Effect of relative humidity cannot be simulated in SMOKE-MOVES
- SMOKE-MOVES is complicated, cumbersome, inconsistent, and confusing

Complicated: 3 models, MOVES, SMOKE-MOVES, SMOKE;

Cumbersome: Linux/Windows platform switches;

Inconsistent: implementation b/w MOVES and SMOKE-MOVES;

Confusing: documentation inadequate

- Background
- **MOVES Emission Processes**
- Data Analyses on Lookup Tables
- Effect of Relative Humidity
- Effect of Reid Vapor Pressure
- Effect of Vehicle Fleet Age
- Algorithm Separating Emission Processes
- Temporal Profiles
- Summary and Conclusion

MOVES Emission Processes

Process ID	Abbreviation	Process Name
1	EXR	Running Exhaust
2	EXS	Start Exhaust
9	BRK	Brakewear
10	TIR	Tirewear
11	ЕРМ	Evap Permeation
12,	EFV	Evap Fuel Vapor Venting
13	EFL	Evap Fuel Leak
15	CXR	Crankcase Running Exhaust
16	cxs	Crankcase Start Exhaust
17	CEI	Crankcase Extended Idle Exhaust
18	RFV	Refueling Displacement Vapor Loss
19	RFS	Refueling Spillage Loss
90	EXT	Extended Idle Exhaust
99		Well-to-Pump

EXR/CXR: running exhaust

EXS/CXS: start exhaust **EXT/CEI:** extended idling

EPM, EFV, EFL, EFV, EFS:

VOCs related processes

BRK, TIR:

PM related processes

Emission Processes by Sector

RPD		RPV		RPP	
Rate-Per-Distance		Rate-Per-Vehicle		Rate-Per-Profile	
MOVES	SMOKE	MOVES	SMOKE	MOVES	SMOKE
EXR		EXS		EFV	EVP
CXR	EXH	cxs	EXH		
ЕРМ	EPM	ЕРМ	EPM		
EFV		EFL	EVP		
EFL	EVP	EXT			
BRK	BRK	CEI	EXT		
TIR	TIR				

RPD: vehicles in motion (running emissions)

RPV: vehicles motionless (cold start, extended idling)

RPP: parked vehicles (fuel vapor venting, VOCs only)

RPV (rate-per-vehicle) should not to be confused with RVP (Reid Vapor Pressure)

Additive Mechanism

By pollutants in MOVES:

```
RPD = (EXR + CXR) +
EPM_VOC+ EFL_VOC + EFV_VOC +
BRK_PM25 + TIR_PM25;
RPV = (EXS + CXS) + (EXT + CEI) +
EPM_VOC + EFL_VOC;
RPP = EFV_VOC
```

RPD: vehicle in motion

RPV: vehicle motionless

RPP: parked vehicles

By pollutants in SMOKE-MOVES:

```
RPD = EXH +

EPM_VOC+ EVP_VOC +

BRK_PM25 + TIR_PM25;

RPV = EXH+ EXT +

EPM_VOC + EVP_VOC +

RPP = EFV VOC
```

function of speed

```
Total Hourly Emissions =

RPD (speed) * VMT * temporal factor +

RPV (hr)* VPOP +

RPP (hr) * VPOP
```

function of hour

- Background
- MOVES Emission Processes
- Data Analyses on Lookup Tables -Systematic sensitivity runs
- Effect of Relative Humidity
- Effect of Reid Vapor Pressure
- Effect of Vehicle Fleet Age
- Algorithm Separating Emission Processes
- Temporal Profiles
- Summary and Conclusion

SMOKE-MOVES Lookup Tables

- Lookup tables contain millions of data records of emission rates for a variety of modeling conditions: example: 0.8 g/mile of NOx for LDGV travels at 50 mph on urban freeway (SCC = 2201001250) at ambient temperature of 60F
- Emission rates vary widely if conditions (county, fuel month, SCCs, speed, temperature) change
- Rates are small numbers (in unit activity of g/mile or g/car/hr). They are the building blocks for emissions and must be accurately generated prior to combination with activity. The accuracy hinges on MOVES runs using local, state-supplied inputs of surrogated counties

- -- LDGV releases more NOx and CO at higher temperatures, but emits more PM2.5 at lower temperatures.
- -- The lower the speed an LDGV travels, the higher the emissions for all pollutants.
- -- Winter and summer fuels affect CO only. Winter fuel has higher CO emission rates than summer fuel.

Rate-Per-Distance (RPD) by Pollutants – Running Exhaust (EXR)

- -- The lower the speed an LDGV travels, the higher the emissions for all pollutants.
- -- LDGV releases more NOx and CO at higher temperatures, but emits more PM2.5 at lower temperatures.

Rate-Per-Distance (RPD) by Emission Process - NOx
NOx rates by emission process for scc = 2201001110

LDGV. R LDGV, Rural Interstate EXR_NOx CXR NOx 0.5 1.0 1.5 2.0 2.5 3.0 3.5 temperature temperature g/mile g/mile speed bins EPM_NOx speed bins EFV_NOx temperature temperature 80 0.5 g/mile g/mile 10 11 12 13 14 15 16 speed bins speed bins EFL_NOx **BRK NOX** temperature temperature g/mile g/mile speed bins speed bins

○ 10 ○ 15 ○ 20 ○ 25 ○ 30 ○ 35 ○ 40 ○ 45 ○ 50 ○ 55 ○ 60 ○ 65 ○ 70 ○ 75

+10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +60 +65 +70 +75

-- NOx are not present in brakewear (BRK) or VOC related processes (EPM, EFV, EFL).

16 speed bin (avg mph), winter fuel 02.5 05

16 speed bin (avg mph), summer fuel +2.5 + 5

Rate-Per-Distance (RPD) by Emission Process - PM2.5

PM2.5 rates by emission process for scc = 2201001110 LDGV, Rural Interstate EXR_PM25 0.00.00.100.100.20.20.30.35 temperature temperature g/mile g/mile speed bins EFV_PM25 speed bins EPM_PM25 temperature temperature 0.5 g/mile g/mile 10 11 12 13 speed bins speed bins EFL_PM25 BRK PM25 temperature q/mile temperature g/mile 9 10 11 12 13 14 15 16 speed bins speed bins 16 speed bin (avg mph), winter fuel 02.5 05 0 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0 55 0 60 0 65 0 70 0 75

+10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +60 +65 +70 +75

16 speed bin (avg mph), summer fuel +2.5 + 5

⁻⁻ In RPD sector, running exhaust (EXR), crankcase running exhaust (CXR), brakewear (BRK), and tirewear (TIR) emit PM2. 15

⁻⁻ PM2.5 are not present in VOC related processes (EPM, EFV, EFL). PM2.5 in brakewear (BRK) have no temperature dependence.

⁻⁻ All emission processes release VOCs with the exception of brakewear (BRK).

-- VOCs in evaporative permeation (EPM) have much greater temperature dependence but less speed dependence than other processes.

Rate-Per-Vehicle (RPV) by Pollutants - Start Exhaust (EXS)

- -- For LDGV, MOVES has pre-set four emission peak hours at 8am, 1pm, 3pm, and 6pm. Rates are lower at off-peak hours. 17
- -- The four peak hours are pre-determined internally in MOVES. Unless modifying default database, the peak hours cannot be changed.

Rate-Per-Vehicle (RPV) by Process - PM2.5

weekday PM2.5 rates by emission process for scc=2230074000
EXS_PM25
CXS_PM25

HHDDV, Off-network

- -- For HHDDV, MOVES has also pre-set peak hours. Engine start (EXS/CXS) have different profiles from extended idling (EXIE).
- -- Emission rates for HHDDV are higher at off-peak night-time and wee hours when drivers turn on the engines and sleep in the trailers.

- Background
- **MOVES Emission Processes**
- Data Analyses on Lookup Tables
- Effect of Relative Humidity -Assumed constant in SMOKE-MOVES
- Effect of Reid Vapor Pressure
- Effect of Vehicle Fleet Age
- Algorithm Separating Emission Processes
- **Temporal Profiles**
- Summary and Conclusion

Effect of Relative Humidity on EXR - Albemarle
EXR Emission Rate for 2201001110 (gram/mile) LDGV, Rural Interstate PM25 NOX ≌ temperature temperature g/mile 2 g/mile 80 100 60 80 60 100 relative_humidity (%) relative humidity (%) voc CO RPV (parked cars) has no RH dependence 200 20 temperature 100 ŝ 97 8 5.5 2 100 100 relative humidity (%) relative humidity (%)

-- Relative humidity affects emission rates when temperatures are above 60F. The effect levels off as temperature increases. 20

60

***** 50

***** 70

2 80

***** 90

***** 110

-- All criteria pollutants except PM2.5 are affected by relative humidity. NOx are high at low RHs.

*****30

<u>‡</u> 10

T(°F)

* -10

Effect of Relative Humidity on EXR - Fairfax

- -- Fairfax run show similar trends to those of Albemarle. Does relative humidity refer to ambient or air-conditioned condition?21
- -- Relative humidity exerts similar effect on emission rates regardless of county (and likely regardless of base year or model version as well).

- Background
- **MOVES Emission Processes**
- Data Analyses on Lookup Tables
- Effect of Relative Humidity
- Effect of Reid Vapor Pressure

 Two fuel-month practice in SMOKE-MOVES
- Effect of Vehicle Fleet Age
- Algorithm Separating Emission Processes
- **Temporal Profiles**
- Summary and Conclusion

Effect of Reid Vapor Pressure on EXR - Albemarle
EXR Emission Rate for 2201001110 (gram/mile)

- -- Fuels with higher Reid Vapor Pressure release higher emissions. All criteria pollutants except PM2.5 are affected by RVP. 23
- -- NOx rates are higher at higher temperature, whereas PM2.5 rates are higher at lower temperature. Consistent with what's shown in other slides.

- -- Fairfax run shows similar trends to Albemarle. Effect of Reid Vapor Pressure has significant implication for fuel month apparent.
- -- Effect of Reid Vapor Pressure are similar regardless of county (and likely regardless of base year or model version as well).

- Background
- MOVES Emission Processes
- Data Analyses on Lookup Tables
- Effect of Relative Humidity
- Effect of Reid Vapor Pressure
- Effect of Vehicle Fleet Age -Important factor affecting emissions
- Algorithm Separating Emission Processes
- **Temporal Profiles**
- Summary and Conclusion

Fleet Age Sensitivity Setup

Fairfax/Albemarle 2011

Model Year	Control	Scenario1	Scenario2	Scenario3
20-31 years (1981-1990)	0.03225	-5 %	-5 %	+10%
10-20 years (1991-2000)	0.03225	-5 %	+10%	<i>-</i> 5%
0-10 years (2001-2011)	0.03225	+10%	-5 %	<i>-</i> 5%

^{*} County is assumed to have a hypothetical fleet of 1/31 (0.03225) for all vehicle types;

Addition dimension, vehicle model year, is involved in model input/output and post-processing

^{*} Scenario1 increases newest fleet by 10% and decreases the older fleets by 5%;

^{*} Scenario2 increases middle-aged fleet by 10% and decreases the other two fleets by 5%;

^{*} Scenario3 increases the oldest fleet by 10% and decreases the newer fleets by 5%;

^{*} Fractions for a particular vehicle type must sum up to 1.

- -- Age of LDGV fleet spans 31 years from model year 1981 to model year 2011.
- -- Emission rates are higher for older vehicles (i.e., older cars are dirtier).

model year

model year

EXR Emission Rate for 2201001 at RH=60% (gram/mile)

- -- Age of LDGV fleet spans 31 years from model year 1981 to model year 2011.
- -- Emission rates are higher for older vehicles (i.e., older cars are dirtier.) Different counties (Fairfax vs Albemarle) show similar trends.

EXR Emission Rate for 2201070 at RH=60% (gram/mile)

HDGV, All ros

- -- HDGV in some model years get higher emission rates than other model years???
- -- MOVES seems to have internally pre-determined emission rates according to model year for some vehicle types.

- -- Rates are shown as differences between scenario and control case. Control case subtracts itself to be zero for all model years 30
- -- The entire HDGV fleet for scenario1 has lower rates than control case. Scenario2 and 3 both have higher rates than control case.

- -- Rates are shown as differences between scenario and control case. Control case subtracts itself to be zero for all model years. 31
- -- Similarly, the entire HHDDV fleet for scenario1 has lower rates than control case. Scenario2 and 3 both have higher rates than control case.

- Background
- **MOVES Emission Processes**
- Data Analyses on Lookup Tables
- Effect of Relative Humidity
- Effect of Reid Vapor Pressure
- **Effect of Vehicle Fleet Age**
- Algorithm Separating Emission Processes Start versus running emissions
- **Temporal Profiles**
- Summary and Conclusion

Process Separation Algorithm

Start Emissions versus Running Emissions – lookup table mode

Based on additive mechanism and mass balance:

Example: NOx

```
RPD = Running Emissions = EXR + CXR
```

RPV = Start + Extended Idle Emissions = (EXS + CXS) + (EXT + CEI)

Start: Running = (RPV - (EXT + CEI)): RPD <-- exact approach

Start: Running = ~ RPV: RPD (if extended idling is small) <-- approximation can be analyzed by county, by SCC7 (vehicle type), by pollutants, or by day

^{*} VOCs separation is a little complicated, because it involves a lot more processes;

^{*} For Inventory mode, start and running can be estimated directly if process is requested in the runspec.

Ratio of Start to Running Emissions -- NOx

- -- Estimates of start and running emissions by inventory mode and lookup table mode are similar.
- -- NOx ratios are below 50% throughout the commonwealth, indicating running is the larger contributor.
- -- Counties with ratios higher than 50% are small in size with very low emissions.

- Background
- MOVES Emission Processes
- Data Analyses on Lookup Tables
- Effect of Relative Humidity
- Effect of Reid Vapor Pressure
- Effect of Vehicle Fleet Age
- Algorithm Separating Emission Processes
- Temporal Profiles
 Improving hourly emissions
- Summary and Conclusion

VA 2011 Daily Temporal Profiles for Vehicular Emissions

⁻⁻ For NOx and PM2.5, RPD dominates among the three sectors, accounting for >80% of the two pollutants.

⁻⁻ By contrast, for CO and VOCs, RPV is the dominating sector, whereas RPP is the least contributor to VOCs among the three.

VA 2011 Daily Temporal Profiles for Vehicular CO Emissions

- -- Daily profiles by county show some variations. RPP sector (VOCs only) does not contribute to CO.
- -- Discontinuity due to two fuel months starts to diminish as county emissions get smaller (Fairfax -> Hampton -> Albemarle -> Fredericksburg).

Temporal Traffic Patterns by Road Types

MWCOG traffic profiles (in percentage) by road types

-- AM: inbound traffic to the city; PM: outbound traffic from the city; EVEN: inbound and outbound evenly distributed.

38

-- Percentage is based on traffic counts observed at a particular location.

Various Temporal Profiles (Surrogates) hourly temporal profiles

- -- Neither SMOKE VMT profile nor hourly/constant speed profile is a good representation to actual traffic patterns.
- -- VMT and speed profiles are inconsistent: vehicles moving at lower speed in evening rush hours end up traveling more miles.

Summary and Conclusion

- Three dimensional graphics is an effective way in understanding complex processes and parameters in MOVES.
- Emission processes are additive in MOVES and SMOKE-MOVES.
- Lookup tables generated from SMOKE-MOVES can be treated as a series of systematic sensitivity runs. They contain general and useful information.
- Relative humidity has greatest impact on emissions when temperature is above 60F.
- Higher Reid Vapor Pressure generates higher emissions. The common practice of two fuel months may be inadequate.
- Slight variation of fleet age distribution has significant impact on emissions.
- Additive mechanism and mass balance allow separation of MOVES emission process. Running emissions are much larger than start emissions.
- Hourly vehicular emissions can be improved by suitable temporal surrogates.